TECHNICAL BULLETIN

Vibratory Hammers • Power UnitsAuger Systems • Diesel \& Hydraulic Hammers
Drill Rigs • Hydraulic Piling Rigs • Wick Drain Installers • Lead Systems

www.jandm-usa.com

\#1 How To Determine Gear Pump Flow And Displacement

Today we will be covering how to determine gear pump flow, and displacement.
Let's first cover how a gear pump works. The oil enters the gear pump from the (Inlet) tank and travels around the outside of the gear and forced out of the pressure port. See IMG. 1
IMG. 1

There are 2 each brass side pressure plates that are $1 / 4^{\prime \prime}$ thick on both sides of the gear. These keep the oil retained in the teeth from the side. See IMG.2,3

IMG. 2
IMG. 3

Northeast Regional Office

APE China
Building No. 233, Fu Qiao Road Gu Cun Industrial Zone Baoshan District Shanghai, China 201906 011-86-21-5677-1221 FAX 011-86-21-3604-0553

Southeast Regional Office

Mid-Western Regional Office

Louisiana Regional Office 39266 A Doyle Drive Gonzales, LA 70737 (225) 644-7722 FAX (225) 644-7626

Gulf Regional Office
3975 FM Hwy 1485
Conroe, TX 77306
(800) 596-2877 • (936) 271-1044 FAX (936) 271-1046

TECHNICAL BULLETIN

www.jandm-usa.com

When you measure the pump section you will have to subtract $1 / 2^{\prime \prime}$ because of the two $1 / 4^{\prime \prime}$ side pressure plates. Yellow arrow. See IMG. 4

IMG. 4

Looking at IMG.4, if the yellow arrow measures 2" the gear section is $1 \frac{1}{2 \prime \prime}$. See IMG. 5

IMG. 5

WWW.DEFEOMFG.COM

To figure out what gear section you have inside the pump you will need to know the model of pump that is being used.

We generally use a P465 model pump for our 4500 P.S.I. hydraulic circuits. We are accustomed to using the pump code as the call out. See IMG. 6 Chart. If you measure a P465 pump at a $2^{\prime \prime}$ outside section like in IMG.4, it would be a code (15) and have a displacement of 5.4 cubic inches. See IMG. 6 Chart. (The cubic inches is how much oil the pump will put out with 1 rotation.)

We can now measure all the drive pump sizes and combine them to figure out what the displacement is for the drive circuit. As an example, a 765 P/U paired with a 200-6 vibro has 4 each (15)'s and 1 each (7) size drive pumps that are the P465 model.
Northeast Regional Office

Southeast Regional Office

Mid-Western Regional Office

Louisiana Regional Office
39266 A Doyle Drive
Gonzales, LA 70737 (225) 644-7722 FAX (225) 644-7626

Gulf Regional Office 3975 FM Hwy 1485 Conroe, TX 77306
(800) 596-2877 • (936) 271-1044 FAX (936) 271-1046

www.jandm-usa.com

We know that a (15) is 5.4 cubic inches and a (7) is 2.7 cubic inches by using IMG. 6 Chart
See the below math on how to add the pumps together.

$5.4 \times 4=21.6+2.7=24.3$ cubic inches total.

We now now that we have 24.3 cubic inches' total volume for our drive pumps.
The pump drive on the $765 \mathrm{P} / \mathrm{U}$ is a 1:1 gear ratio. The max engine R.P.M. is 2050.
We can know figure out the GPM that the P/U puts out. Using the IMG. 6 Chart formula for Pump Output (GPM).

See IMG. 6 Orange Arrow.

See the math formula below for the $765 \mathrm{P} / \mathrm{U}$.
Pump Output (GPM)

```
2050 X 24.3 = 215.65GPM
    231
```

Above we can see that a 765 P/U running at 2050 R.P.M. with a standard configuration of drive pumps will produce 215.65 GPM.

We will be addressing how pump efficiency comes into play with this formula in an upcoming technical bulletin.

IMG. 6 Chart on next page.

APE China
Bullding No. 233, Fu Qiao Road Gu Cun Industrial Zone Baoshan District Shanghal, China 201906 011-86-21-5677-1221 FAX 011-86-21-3604-0553

Northeast Regional Office

Louisiana Regional Office 39266 A Doyle Drive Gonzales, LA 70737 (225) 644-7722 FAX (225) 644-7626

Gulf Regional Office

Southeast Regional Office

Mid-Western Regional Office

Western Regional Office

TECHNICAL BULLETIN

www.jandm-usa.com

			DISPLACEMENT (d) PUMP/MOTOR									(c) 1898. Commarelal intortoch Corp.			
PUNP MODEL SERIES		$\begin{aligned} & 16 \mathrm{H} \\ & 15 \mathrm{X} \end{aligned}$	30 31	$50 / 51$ 258	37X	75 76	125	P315	P330	P350	P385	P415	P430	P450	P485.
DISPLACEMENT (d) PBR IN. OP GBAR TIDTH		$\begin{gathered} 1.37 \\ \text { in } 3 / \text { Rev } \end{gathered}$	$\begin{gathered} \left.\begin{array}{c} 1.87 \\ \ln ^{9} / \text { Rav } \end{array} \right\rvert\, \end{gathered}$	$\begin{gathered} 2.55 \\ \text { in }^{3} / \text { Rev } \end{gathered}$	$\begin{gathered} 3.00 \\ \operatorname{tin}^{3} / \text { Rer } \end{gathered}$	$\begin{gathered} 4.10 \\ \ln ^{3} / \mathrm{Rsv} \end{gathered}$	$\begin{gathered} 6.47 \\ \ln ^{3} / \mathrm{Ber} \end{gathered}$	$\begin{array}{l\|} 1.24 \\ \mathrm{in}^{2} / \mathrm{Rev} \\ \hline \end{array}$	$\begin{gathered} 1.97 \\ \text { in }^{3} / \mathrm{Rer} \\ \hline \end{gathered}$	$\begin{gathered} 2.55 \\ \ln ^{2} / R \mathrm{ev} \\ \hline \end{gathered}$	$\begin{gathered} 3.60 \\ \sin 3 / \mathrm{Rev} \end{gathered}$	$\ln ^{1.24}$	$\begin{gathered} 1.97 \\ 13^{3} / \text { Rer } \\ \hline \end{gathered}$	$\begin{gathered} 2.55 \\ \mathrm{In}^{3} / \text { Rev } \\ \hline \end{gathered}$	$\begin{array}{r} 3.60 \\ \sin 3 / \mathrm{Rev} \\ \hline \end{array}$
MAXMMURECOMMBNDEDPRESSURB		$\begin{gathered} 2000- \\ 2500 \\ \text { PSI } \\ \hline \end{gathered}$	$\begin{aligned} & 2500- \\ & 3000 \\ & \text { PSI } \\ & \hline \end{aligned}$	$\begin{gathered} 2000- \\ 3000 \\ \text { PSI } \\ \hline \end{gathered}$	2000 PSI	$\begin{gathered} 2500- \\ 3000 \\ \text { PSI } \end{gathered}$	$\begin{array}{r} 2500 \\ \text { PSI } \\ \hline \end{array}$	$\begin{gathered} 3000- \\ 3500 \\ \text { PSI } \\ \hline \end{gathered}$	$\begin{gathered} 3000- \\ 3500 \\ \text { PSI } \\ \hline \end{gathered}$	$\begin{gathered} 3000- \\ 3500 \\ \text { PSI } \\ \hline \end{gathered}$	$\begin{aligned} & 3000- \\ & 3500 \\ & \text { PSI } \\ & \hline \end{aligned}$	$\begin{aligned} & 4000- \\ & 4500 \\ & \text { PSI } \\ & \hline \end{aligned}$	$\begin{aligned} & 4000- \\ & 4500 \\ & \text { PSI } \\ & \hline \end{aligned}$	$\begin{aligned} & 4000- \\ & 4500 \\ & \text { PSI } \\ & \hline \end{aligned}$	$\begin{aligned} & 4000- \\ & 4500 \\ & \text { PS1 } \end{aligned}$
GEAR SIZE	CODE	d	d	¢	d	d	d.	8547	d 4	d	d	d,	d.	d	d
1/2	(05)	. 685	. 985	1.275	1.500	2.050	3.230	. 620	. 985	1.275	1.800	. 620	. 985	1.275	1.800
3/4	(07)	1.027	1.470	1.912	2.250	3.070	4.850	. 830	1.470	1.912	2.700	. 930	1.470	1.912	2.700
1	(10)	1.370	1.970	2.550	3.000	4.100	6.470	1.240	1.970	2.550	3.600	1.240	1.970	2.550	3.600
1-1/4	(12)	1.712	2.460	3.187	3.750	5.120	8.080	1.550	2.460	3.187	4.500		2.460	3.187	4.500
1-1/2	(15)	2.050	2.950	3.820	4.500	6.150	9.700	1.860	2.950	3.820	5.400				5.400
$1-3 / 4$	(17)	2.397	3.440	4.460	5.250	7.1701	11.320	2.170	3.440	4.460	6.300	8	1.9		
2	(20)	2.740	3.940	5.100	6.000	8.2001	12.940	2.480	3.940	5.100	7.200				
2-1/4	(22)			5.730	6.750	9.2201	14.550			5.730	8.100				
$2-1 / 2$	(25)			6.375	7.500	10.2501	16.170			6.375	9.000				
$2-3 / 4$	(27)					11.275									
3	(30)				9.000	12.30									
GENERAL FORMULAS															
MOTOR SPEED (R.P.M.)$\text { Speed }=\frac{231 \times G P M}{d}=\text { RPM }$			MOTOR TORQUE IN INCH POUNDS$\frac{\text { PSI } \mathrm{zd} \mathrm{d} \text { Efficiency }}{2 \pi}=\mathrm{T}$					$\begin{aligned} & \text { PUXP OUTPUT (GPM) } \\ & \frac{\text { RPM } \mathrm{x} \text { d }}{231}=\text { GPY } \end{aligned}$				PUMP INPUT (HP reqd.)$\frac{\text { GPM } £ \mathrm{PSI}}{1714 \geq \mathrm{Ef} \mathrm{~L}_{0}}=\mathrm{HP}$			
HORSEPOMER$\frac{\text { TORQUE (in.Ibs.) I RPM }}{63025}=H P$			FLOF RATE THRU PIPING $\frac{.3208 \text { 天 GPM }}{\text { AREA }(\text { PIPE1. } 1 .)}=V$				$\begin{array}{r} \text { D"SENES }=2.36 \\ \text { PEA I"OF GE } \end{array}$								

APE CHINA

Buiding No 233. Fu Qiao Road Gu Cun Industrial Zone Baoshan District

Shanghai, China 201906
011-86-21-5677-1221
FAX 011-86-21-3604-0553

Mid-Atlantic Regional Office
500 Newton Road, \#200
Virginia Beach, VA 23462 (866) 399-7500 • (757) 518-9740

FAX (757) 518-9741

Southeast Regional Office
1345 Industrial Park Road
Mulberry, FL 33860
(800) 570-3844 • (863) 324-0378

FAX (863) 318-9409

Mid-Western Regional Office
50 Gerber Industrial. Dr.
St. Peters, MO 63376 (877) 296-8044 • (636) 397-8400 FAX (636) 278-4278

Gulf Regional Office
3975 FM Hwy 1485
Conroe, TX 77306
(800) 596-2877 • (936) 271-1044 FAX (936) 271-1046

